gene family evolution

Large-Scale Genome Sampling Reveals Unique Immunity and Metabolic Adaptations in Bats

Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune system and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defense receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defense response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance anti-viral immune response while dampening inflammatory signaling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.

Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat

Mammalian olfactory receptors (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoires is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of more specialized OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed leaf-nosed bats (*Carollia*), which vary in their degree of specialization on the fruits of *Piper* plants. We characterized orthologous versus duplicated receptors among *Carollia* species, and identified orthologous receptors and associated paralogs to explore the diversity and redundancy of the receptor gene repertoire. The most dedicated *Piper* specialist, *Carollia castanea*, had lower OR diversity compared to the two more generalist species (*sowelli*, *perspicillata*), but we discovered a few unique sets of ORs within *C. castanea* with exceptional redundancy of similar gene duplicates. These unique receptors potentially enable *C. castanea* to detect *Piper* fruit odorants to an extent that the other species cannot. *C. perspicillata*, the species with the most generalist diet, had a larger diversity of functional receptors, suggesting the ability to detect a wider range of odorant molecules. The variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication plays a role in dietary adaptations and underlies patterns of ecological interactions between bats and plants.

Six reference-quality genomes reveal evolution of bat adaptations

Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our ‘Tool to infer Orthologs from Genome Alignments’ (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.

Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats

Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages …

Species tree disequilibrium positively misleads models of gene family evolution

Gene duplication is a key source of evolutionary innovation, and multigene families evolve in a birth-death process, continuously duplicating and pseudogenizing through time. To empirically test hypotheses about adaptive expansion and contraction of multigene families across species, models infer gene gain and loss in light of speciation events and these inferred gene family expansions may lead to interpretations of adaptations in particular lineages. While the relative abundance of a gene subfamily in the subgenome may reflect its functional importance, tests based on this expectation can be confounded by the complex relationship between the birth-death process of gene subfamily evolution and the species phylogeny. Using simulations, we confirmed tree heterogeneity as a confounding factor in inferring multi-gene adaptation, causing spurious associations between shifts in birth-death rate and lineages with higher branching rates. We then used the olfactory receptor (OR) repertoire, the largest gene family in the mammalian genome, of different bat species with divergent diets to test whether expansions in olfactory receptors are associated with shifts to frugivorous diets. After accounting for tree heterogeneity, we robustly inferred that certain OR subfamilies exhibited expansions associated with dietary shifts to frugivory. Taken together, these results suggest ecological correlates of individual OR gene subfamilies can be identified, setting the stage for detailed inquiry into within-subfamily functional differences.

Evaluating the performance of targeted sequence capture, RNA-Seq, and degenerate-primer PCR cloning for sequencing the largest mammalian multigene family

Multigene families evolve from single‐copy ancestral genes via duplication, and typically encode proteins critical to key biological processes. Molecular analyses of these gene families require high‐confidence sequences, but the high sequence …

Expressed vomeronasal type-1 receptors (V1rs) in bats uncover conserved sequences underlying social chemical signaling

In mammals, social and reproductive behaviors are mediated by chemical cues encoded by hyperdiverse families of receptors expressed in the vomeronasal organ. Between species, the number of intact receptors can vary by orders of magnitude. However, …

Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: Sternorrhyncha)

Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present …

A Cluster of Olfactory Receptor Genes Linked to Frugivory in Bats

Diversity of the mammalian olfactory receptor (OR) repertoire has been globally reshaped by niche specialization. However, little is known about the variability of the OR repertoire at a shallower evolutionary timeframe. The vast bat radiation …