We focus on biodiversity and conserving the world’s life support systems into the future. In our research, we use genetics, genomics, and statistical tools to discover mechanisms of extinction and survival.
Liliana Dávalos has been awarded the 2022 Award for Excellence in Assessment at this year’s 2022 Celebration of Teaching Awards. See the full program here.
Mongabay’s Sean Mowbray has generated a wide-ranging review of environmental impacts of coca at every stage of the illegal drug market and its response. The review highlights deforestation dynamics from production and trafficking, including quotes from Liliana!
William Thomas won the American Genetic Association’s Evolutionary, Ecological, or Conservation Genomics Research Award! Bill joins lab alumni Marisa Lim and Elise Lauterbur in receiving this distinction. The award will enable Bill to parse the relative importance of demography and selection as processes that shape genetic diversity in the Eurasian common shrew!
Liliana M. Dávalos is Professor of Conservation Biology at Stony Brook University’s Department of Ecology and Evolution. Centered on biodiversity, her research applies a range of molecular and quantitative tools ranging from molecular evolution to spatial statistics.
PhD in Ecology, Evolution,and Environmental Biology, 2004
Columbia University (New York, New York)
Certificate in Environmental Policy Studies, 2001
Columbia University (New York, New York)
BSc in Biology (emphasis on Genetics), 1997
Universidad del Valle (Cali, Colombia)
Taught evolution and researched molecular ecology
This annual lecture, like the Environmental Studies Program, takes an interdisciplinary approach to the natural environment and human interaction with it.
Watch videoTo investigate evolution and mechanisms of seasonal reversible size changes in a mammal.
See noticeFor outstanding teaching and true caring for students.
Symposia bring together outstanding young scientists to discuss exciting advances and opportunities in a broad range of disciplines.
See profileData available to new students. Why are bats so likely to carry coronaviruses, yet seem little affected by them? Many studies have focused on their immune system, but there is much to learn about the cells viruses attack upon entry.
Data available to new students. All aspects of society have been upended by COVID-19. While most research has understandably focused on clinical applications, how the ancestors of SARS-CoV2 survive and circulate in nature is vital to both prevent future epidemics and help health professionals develop therapeutic treatments.
In support of RA Kristjan Mets. While scientific reaction to the COVID-19 pandemic has been swift, the risk of SARS-CoV-2 spilling back into native North American wildlife and feral domestic animals remains underexplored. Experimental infections of a variety of hosts, serological analyses of the cats in Wuhan, and cases of COVID-19 among tigers and lions in the Bronx Zoo, all have shown transmission back to wildlife and feral cats is highly probable. Tools are urgently needed to determine which of these animal populations are at greatest risk of establishing a native reservoir, and where the overlap with human populations is greatest. We propose to model the risk of spillover to animal populations and conversely the risk of future secondary spillover by combining models of molecular interaction between the virus and potential hosts, with multi- species Susceptible-Infectious-Recovered (SIR) models. Complementing decades of experience in vertebrate genomics (Dávalos) with expertise in epidemiology (Meliker), and spatial dynamics of wildlife disease (Mets), ours is the ideal team to quickly generate and test the necessary models to avert this risk.
To answer the question of how the shrew shrinks and then regrows its brain, we will establish this unusual species as a new model, by studying the biological, molecular, biochemical and genetic processes behind this reversible size change.
Data available for new students. We assembled a group of socio-environmental scientists to analyze and model the natural and human factors that determine the extinction and resilience of insular vertebrate fauna and leverage this understanding into metrics for use in conservation assessments.
We propose to develop a cross-scale research program that focuses on the relationships between phylogenetic diversity, genetic diversity and functional diversity of a biologically and economically important taxonomic group; bats.
Data available to new students. This project focuses on pairs of closely related bat species that sharply differ in their longevity. Detailed genome comparisons between closely related species with different life spans will test different theories of aging.
This training program responds to the challenges of new careers at the interface between science and decision making with an interdisciplinary set of new courses and a suite of activities united by the theme of “Scientific Training and Research to Inform DEcisions” (STRIDE).
Data available to new students. The project focuses on a relatively unexplored yet crucial aspect of plant-animal mutualisms; volatile chemical communication between plants and vertebrate frugivores.
Data available to new students. This project focuses on a diverse group of tropical bats in which various species evolved acute, specialized hearing, supersensitive eyes, the ability to smell subtle plant chemicals, or highly developed vomeronasal systems (thought to contribute to mating and social hierarchy).
The goal of this project was to discover the mechanisms underlying the survival of remnant populations in the WNS-affected area.
Noctilionoid bats comprise more than 200 species that span the entire ecological diversity of land mammals. They range from tiny insectivores and nectarivores to large carnivores, and even vampire bats. This is an unparalleled system for understanding how, when, and where bats evolved new diets, changed roosting habits and developed different kinds of echolocation. Together with the N. B. Simmons Lab, we are generating species-level phylogenies using molecular and morphological data, and including fossils of >20 extinct species. These phylogenies provide frameworks for investigating patterns and processes of ecological adaptation, speciation, and extinction across a hyperdiverse group of mammals.
The project will generate hypotheses about the evolutionary relationships of 5 different groups of bats, each containing at least one exclusively Antillean species. These evolutionary relationships will then be used to establish the timing and pattern of separation among bat species in the Antilles and their South and Central American relatives, and will also be compared with similar hypotheses about other terrestrial organisms. Drs. Nancy Simmons, Rob DeSalle, and Liliana Davalos will use standard methods for obtaining and analyzing morphological and molecular data from the study groups. Patterns of evolutionary relationships resulting from these data will be compared applying at least 5 different approaches.
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting. The positions of Eulipotyphla and Chiroptera as the first and second earliest divergences were consistent across the approaches. However, the phylogenetic relationships of Perissodactyla, Cetartiodactyla, and Ferae, were contradictory. While retrotransposon insertion analyses suggest a clade with Cetartiodactyla and Ferae, the exon dataset favoured Cetartiodactyla and Perissodactyla. Future analyses of hitherto unsampled laurasiatherian lineages and synergistic analyses of retrotransposon insertions, exon and conserved intron/intergenic sequences might unravel the conflicting patterns of relationships in this major mammalian clade.
Scientists recognize the Caribbean archipelago as a biodiversity hotspot and employ it for their research as a “natural laboratory”. Yet, they do not always appreciate that these ecosystems are in fact palimpsests shaped by multiple human cultures over millennia. Although post-European anthropogenic impacts are well documented, human influx into the region began about 5000 years prior. Thus, inferences of ecological and evolutionary processes within the Caribbean may in fact represent artifacts of an unrecognized human legacy linked to issues influenced by centuries of colonial rule. The threats posed by stochastic natural and anthropogenically influenced disasters demand that we have an understanding of the natural history of endemic species if we are to halt extinctions and maintain access to traditional livelihoods. However, systematic issues have significantly biased our biological knowledge of the Caribbean. We discuss two case studies of the Caribbean’s fragmented natural history collections and the effects of differing governance by the region’s multiple nation states. We identify knowledge gaps and highlight a dire need for integrated and accessible inventorying of the Caribbean’s collections. Research emphasizing local and international collaboration can lead to positive steps forward and will ultimately help us more accurately study Caribbean biodiversity and the ecological and evolutionary processes that generated it.
Human impacts on the Earth’s biosphere are driving the global biodiversity crisis. Governments are preparing to agree on a set of actions intended to halt the loss of biodiversity and put it on a path to recovery by 2050. We provide evidence that the proposed actions can bend the curve for biodiversity, but only if these actions are implemented urgently and in an integrated manner.