Bayesian phylogenetics

Short‐faced bats (Phyllostomidae: Stenodermatina): a Caribbean radiation of strict frugivores
Aim To test the hypothesis that Caribbean Short‐faced bats descended from a single recent ancestor that originated in the continental Neotropics (Mexico, Central America and/or South America). Location The Neotropics, including the West Indies. Methods New mitochondrial cytochrome b and nuclear Rag2 sequences were combined with published molecular data to estimate phylogenetic relationships and sequence divergence among Short‐faced bats. The resulting phylogenies were compared with those compatible with the single‐origin hypothesis using two model‐based statistical tests. Confidence limits on sequence divergence were estimated using a parametric bootstrap. Results All molecular phylogenies revealed two independent Caribbean lineages and showed that continental Short‐faced bats share a recent common ancestor. Morphology‐based trees compatible with the single‐origin hypothesis were significantly worse at explaining the molecular data than any molecular phylogeny. Main conclusions The ancestor of all Short‐faced bats reached the Antilles in the Miocene, too recently to have used a proposed Oligocene land bridge, and well before the Pleistocene glaciations that are thought to have facilitated dispersal for many bats. After a long period of isolation, Short‐faced bats diversified quickly on the Caribbean islands. A single Short‐faced lineage then reached the continent and subsequently expanded its range and diversified into the four extant genera. Among bats, independent lineages of aerial insectivores and nectarivores have also recolonized the continent after evolving in the West Indies. The evidence for an insular origin of the short‐faced frugivorous radiation completes a dynamic model of Caribbean biogeography that encompasses an entire biological community.
The geography of diversification in the mormoopids (Chiroptera: Mormoopidae)
The traditional explanation of the distribution of the Mormoopidae is that this family originated in southern Central America or northern South America, later expanding its range north to Mexico and the West Indies, and differentiating into eight species. An alternative fossil-based hypothesis argues that the family originated in the northern Neotropics, reached the Caribbean early in its history, and dispersed to South America after the completion of the Isthmus of Panama. The present study analyses new and previously published sequence data from the mitochondrial 12S, tRNAval, 16S, and cytochrome b, and the nuclear Rag2, to evaluate species boundaries and infer relationships among extant taxa. Fixed differences in cytochrome b often coincide with published morphological characters and show that the family contains at least 13 species. Two additional, morphologically indistinct, lineages are restricted to Suriname and French Guiana. Phylogeny-based inferences of ancestral area are equivocal on the geographical origin of mormoopids, in part because several internal nodes are not resolved with the available data. Divergences between Middle American and Antillean populations are greater than those between Mexico/Central America and South America. This suggests that mormoopids diversified in northern Neotropics before entering South America. A northern neotropical origin for mormoopids is congruent with both the Tertiary fossil record and recent phylogenetic hypotheses for the sister family to the Mormoopidae, the Phyllostomidae.