Gene duplication

Large-Scale Genome Sampling Reveals Unique Immunity and Metabolic Adaptations in Bats

Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune system and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defense receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defense response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance anti-viral immune response while dampening inflammatory signaling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.

Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat

Mammalian olfactory receptors (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoires is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of more specialized OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed leaf-nosed bats (*Carollia*), which vary in their degree of specialization on the fruits of *Piper* plants. We characterized orthologous versus duplicated receptors among *Carollia* species, and identified orthologous receptors and associated paralogs to explore the diversity and redundancy of the receptor gene repertoire. The most dedicated *Piper* specialist, *Carollia castanea*, had lower OR diversity compared to the two more generalist species (*sowelli*, *perspicillata*), but we discovered a few unique sets of ORs within *C. castanea* with exceptional redundancy of similar gene duplicates. These unique receptors potentially enable *C. castanea* to detect *Piper* fruit odorants to an extent that the other species cannot. *C. perspicillata*, the species with the most generalist diet, had a larger diversity of functional receptors, suggesting the ability to detect a wider range of odorant molecules. The variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication plays a role in dietary adaptations and underlies patterns of ecological interactions between bats and plants.

Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates

Gene duplication is an important process in the evolution of gene content in eukaryotic genomes. Understanding when gene duplicates contribute new molecular functions to genomes through molecular adaptation is one important goal in comparative …

Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: Sternorrhyncha)

Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present …

Dynamic recruitment of amino acid transporters to the insect/symbiont interface

Symbiosis is well known to influence bacterial symbiont genome evolution and has recently been shown to shape eukaryotic host genomes. Intriguing patterns of host genome evolution, including remarkable numbers of gene duplications, have been observed …