frugivory

Testing for reciprocal trait influence in plant-frugivore interactions using generalized joint attribute modeling
Under an adaptive hypothesis, the reciprocal influence between mutualistic plants and frugivores is expected to result in dispersal syndromes comprising both frugivore and plant traits that structure fruit consumption. Tests of this adaptive hypothesis, however, focus on traits of either fruits or frugivores but not both and often ignore within-species variation. To overcome these limitations, we analyze traits for the mutualistic ecological network comprising Carollia bats that feed on and disperse Piper seeds. For these analyses, we use generalized joint attribute modeling (GJAM), a Bayesian modeling approach that simultaneously accounts for multiple sources of variance across trait types. In support of the adaptive hypothesis and indicating niche partitioning among Carollia bats, we find differential consumption of a suite of Piper species influenced by bat traits such as body size; however, Piper morphological traits had no effect on bat consumption. Slow evolutionary rates, dispersal by other vertebrates, and unexamined fruit traits, such as Piper chemical bouquets, may explain the lack of association between bat Piper consumption and fruit morphological traits. We have identified a potential asymmetric influence of frugivore traits on plant-frugivore interactions, providing a template for future trait analyses of plant-animal networks.
Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats
While evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant-visiting from an insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants — a potential ecological constraint on sensory evolution.