article

Testing for reciprocal trait influence in plant-frugivore interactions using generalized joint attribute modeling
Under an adaptive hypothesis, the reciprocal influence between mutualistic plants and frugivores is expected to result in dispersal syndromes comprising both frugivore and plant traits that structure fruit consumption. Tests of this adaptive hypothesis, however, focus on traits of either fruits or frugivores but not both and often ignore within-species variation. To overcome these limitations, we analyze traits for the mutualistic ecological network comprising Carollia bats that feed on and disperse Piper seeds. For these analyses, we use generalized joint attribute modeling (GJAM), a Bayesian modeling approach that simultaneously accounts for multiple sources of variance across trait types. In support of the adaptive hypothesis and indicating niche partitioning among Carollia bats, we find differential consumption of a suite of Piper species influenced by bat traits such as body size; however, Piper morphological traits had no effect on bat consumption. Slow evolutionary rates, dispersal by other vertebrates, and unexamined fruit traits, such as Piper chemical bouquets, may explain the lack of association between bat Piper consumption and fruit morphological traits. We have identified a potential asymmetric influence of frugivore traits on plant-frugivore interactions, providing a template for future trait analyses of plant-animal networks.
Large captivity effect based on gene expression comparisons between captive and wild shrew brains
Compared to their free-ranging counterparts, wild animals in captivity are subject to different conditions with lasting effects on their physiology and behavior. Alterations in gene expression in response to environmental changes occur upstream of physiological and behavioral phenotypes, but there are no experiments analyzing differential gene expression in captive vs. free-ranging mammals. We assessed gene expression profiles of three brain regions (cortex, olfactory bulb, and hippocampus) of wild juvenile shrews (Sorex araneus) in comparison to shrews kept in captivity for two months. We found hundreds of differentially expressed genes in all three brain regions, suggesting a large and uniform captivity effect. Many of the downregulated genes in captive shrews significantly enrich pathways associated with neurodegenerative disease (p<0.001), oxidative phosphorylation (p<0.001), and genes encoding ribosomal proteins (p<0.001). Transcriptomic changes associated with captivity in the shrew resemble responses identified in several human pathologies, such as major depressive disorder and neurodegeneration. Thus, not only does captivity impact brain function and expression, but captivity effects may also confound analyses of natural physiological processes in wild individuals under captive conditions.
Molecular mechanisms of seasonal brain shrinkage and regrowth in Sorex araneus
Human brains typically grow through development, then remain the same size in adulthood, and often shrink through age-related degeneration that induces cognitive decline and impaired functionality. In most cases, however, the neural and organismal changes that accompany shrinkage, especially early in the process, remain unknown. Paralleling neurodegenerative phenotypes, the Eurasian common shrew Sorex araneus, shrinks its brain in autumn through winter, but then reverses this process by rapidly regrowing the brain come spring. To identify the molecular underpinnings and parallels to human neurodegeneration of this unique brain size change, we analyzed multi-organ, season-specific transcriptomics and metabolomic data. Simultaneous with brain shrinkage, we discovered system-wide metabolic shifts from lipid to glucose metabolism, as well as neuroprotection of brain metabolic homeostasis through reduced cholesterol efflux. These mechanisms rely on a finely tuned brain-liver crosstalk that results in changes in expression of human markers of aging and neurodegeneration in Parkinson’s disease and Huntington’s disease. We propose metabolic shifts with signals that cross the brain blood barrier are central to seasonal brain size changes in S. araneus, with potential implications for therapeutic treatment of human neurodegeneration.
Reference-quality bat genomes illuminate adaptations to viral tolerance and disease resistance
Bats carry viruses that can cause severe disease in other mammals. Asymptomatic infections in bats suggest limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species. A systematic analysis showed that signatures of selection in immune genes are more prevalent in bats compared with other mammals. We found an excess of immune gene adaptations in the ancestral Chiroptera and many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, an antiviral gene contributing to hyperinflammation during COVID-19, exhibits a deletion of a cysteine, required for homodimer formation, in rhinolophid and hipposiderid bats. Cellular infection experiments showed enhanced intracellular protein conjugation of bat ISG15 and lack of secretion into extracellular space, where human ISG15 stimulates inflammation. Our work highlights molecular mechanisms contributing to viral tolerance and disease resistance in bats.
Species tree disequilibrium positively misleads models of gene family evolution
Gene duplication is a key source of evolutionary innovation, and multigene families evolve in a birth-death process, continuously duplicating and pseudogenizing through time. To empirically test hypotheses about adaptive expansion and contraction of multigene families across species, models infer gene gain and loss in light of speciation events and these inferred gene family expansions may lead to interpretations of adaptations in particular lineages. While the relative abundance of a gene subfamily in the subgenome may reflect its functional importance, tests based on this expectation can be confounded by the complex relationship between the birth-death process of gene subfamily evolution and the species phylogeny. Using simulations, we confirmed tree heterogeneity as a confounding factor in inferring multi-gene adaptation, causing spurious associations between shifts in birth-death rate and lineages with higher branching rates. We then used the olfactory receptor (OR) repertoire, the largest gene family in the mammalian genome, of different bat species with divergent diets to test whether expansions in olfactory receptors are associated with shifts to frugivorous diets. After accounting for tree heterogeneity, we robustly inferred that certain OR subfamilies exhibited expansions associated with dietary shifts to frugivory. Taken together, these results suggest ecological correlates of individual OR gene subfamilies can be identified, setting the stage for detailed inquiry into within-subfamily functional differences.